DroidDetector: Android Malware Characterization and Detection Using Deep Learning
نویسندگان
چکیده
Smartphones and mobile tablets are rapidly becoming indispensable in daily life. Android has been the most popular mobile operating system since 2012. However, owing to the open nature of Android, countless malwares are hidden in a large number of benign apps in Android markets that seriously threaten Android security. Deep learning is a new area of machine learning research that has gained increasing attention in artificial intelligence. In this study, we propose to associate the features from the static analysis with features from dynamic analysis of Android apps and characterize malware using deep learning techniques. We implement an online deep-learning-based Android malware detection engine (DroidDetector) that can automatically detect whether an app is a malware or not. With thousands of Android apps, we thoroughly test DroidDetector and perform an indepth analysis on the features that deep learning essentially exploits to characterize malware. The results show that deep learning is suitable for characterizing Android malware and especially effective with the availability of more training data. DroidDetector can achieve 96.76% detection accuracy, which outperforms traditional machine learning techniques. An evaluation of ten popular anti-virus softwares demonstrates the urgency of advancing our capabilities in Android malware detection.
منابع مشابه
Android Malware Detection using Deep Learning on API Method Sequences
Android OS experiences a blazing popularity since the last few years. This predominant platform has established itself not only in the mobile world but also in the Internet of Things (IoT) devices. This popularity, however, comes at the expense of security, as it has become a tempting target of malicious apps. Hence, there is an increasing need for sophisticated, automatic, and portable malware...
متن کاملHADM: Hybrid Analysis for Detection of Malware
Android is the most popular mobile operating system with a market share of over 80% [1]. Due to its popularity and also its open source nature, Android is now the platform most targeted by malware, creating an urgent need for effective defense mechanisms to protect Android-enabled devices. In this paper, we propose a novel Android malware classification method called HADM, Hybrid Analysis for D...
متن کاملR2-D2: ColoR-inspired Convolutional NeuRal Network (CNN)-based AndroiD Malware Detections
Machine Learning (ML) has found it particularly useful in malware detection. However, as the malware evolves very fast, the stability of the feature extracted from malware serves as a critical issue in malware detection. The recent success of deep learning in image recognition, natural language processing, and machine translation indicates a potential solution for stabilizing the malware detect...
متن کاملAndroid Malware Characterization using Metadata and Machine Learning Techniques
Android Malware has emerged as a consequence of the increasing popularity of smartphones and tablets. While most previous work focuses on inherent characteristics of Android apps to detect malware, this study analyses indirect features and meta-data to identify patterns in malware applications. Our experiments show that: (1) the permissions used by an application offer only moderate performance...
متن کاملDroidCat: Unified Dynamic Detection of Android Malware
Various dynamic approaches have been developed to detect or categorize Android malware. These approaches execute software, collect call traces, and then detect abnormal system calls or sensitive API usage. Consequently, attackers can evade these approaches by intentionally obfuscating those calls under focus. Additionally, existing approaches treat detection and categorization of malware as sep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016